運用Ansys對相變散熱器進(jìn)行熱分析及優(yōu)化
2013-07-13 by:廣州Ansys中心 來源:仿真在線
運用Ansys對相變散熱器進(jìn)行熱分析及優(yōu)化
1 概述
隨著微電子技術(shù)及組裝技術(shù)的發(fā)展,現(xiàn)代電子設(shè)備正日益成為由高密度組裝、微組裝所形成的高度集成系統(tǒng)。電子設(shè)備日益提高的熱流密度,必將使設(shè)計人員在產(chǎn)品的結(jié)構(gòu)設(shè)計階段面臨熱控制帶來的嚴(yán)峻挑戰(zhàn)。熱設(shè)計處理不當(dāng)是導(dǎo)致現(xiàn)代電子產(chǎn)品失效的重要原因,電子元器件的壽命與工作溫度有直接的關(guān)系。傳統(tǒng)的經(jīng)驗設(shè)計加樣機熱測試的方法已經(jīng)不能適應(yīng)現(xiàn)代電子設(shè)備快速研制、優(yōu)化設(shè)計的需要。利用最新的電子設(shè)備熱設(shè)計及熱分析方法,對于提高電子設(shè)備的熱可靠性具有重要的實用價值。
Ansys作為新穎的有限元分析軟件在熱分析問題方面具有強大的功能,而且界面友好,易于掌握。用戶可以隨心所欲地選擇圖形用戶界面方式或命令流方式進(jìn)行計算。本文就是利用Ansys 的熱分析功能對一種特殊的散熱器進(jìn)行了熱分析,根據(jù)分析結(jié)果對散熱器進(jìn)行了優(yōu)化,取得了較好的效果。
2 相變散熱器原理
物質(zhì)的相變,包括從固相到液相或從液相到氣相等過程,都會吸收大量的熱量。相變散熱器就是利用物質(zhì)的相變吸收大量的熱量,從而起到冷卻發(fā)熱器件的目的。
熱管是一種具有極高導(dǎo)熱性能的傳熱元件,它通過在全封閉真空管內(nèi)工質(zhì)的蒸發(fā)與凝結(jié)來傳遞熱量,具有極高的導(dǎo)熱性、良好的等溫性、冷熱兩側(cè)的傳熱面積可任意改變、可遠(yuǎn)距離傳熱、可控制溫度等一系列優(yōu)點。由熱管組成的換熱器具有傳熱效率高、結(jié)構(gòu)緊湊、流體阻損小等優(yōu)點。
本文所討論的相變散熱器的結(jié)構(gòu)如圖1 所示。由集熱板、熱管、散熱片和相變材料組成。該相變散熱器綜合利用了物質(zhì)相變和熱管的特性,適合工作在真空環(huán)境下,不能進(jìn)行空氣對流散熱的情況。電子器件產(chǎn)生的熱量傳到集熱板上,再通過熱管把熱量傳給散熱片。
散熱片溫度升高后,加熱相變材料,相變材料在常溫下為固相,受熱后溫度升高,當(dāng)達(dá)到相變材料的熔點時,相變材料發(fā)生相變,可以吸收大量的熱量,最終起到冷卻電子器件的目的。
3 相變散熱器模型的簡化
相變散熱器模型非常復(fù)雜,包括的內(nèi)容較多,必須進(jìn)行適當(dāng)?shù)暮喕?才能利用分析軟件進(jìn)行熱分析,模型的簡化分為以下幾個步驟進(jìn)行:
a. 根據(jù)熱管的特性進(jìn)行簡化
熱管可以看做一個軸向?qū)嵯禂?shù)非常高的導(dǎo)熱器件,軸向熱阻可忽略不計。并且熱管的冷端和熱端溫差很小。所以,可以把模型中的集熱板和熱管的熱端簡化,假設(shè)熱管的冷端溫度為固定值。
b. 根據(jù)一般性進(jìn)行簡化相變
散熱器中有很多個散熱片,并且每個散熱片之間的距離為定制,而熱管軸向?qū)嵯禂?shù)非常高,溫差很小,可忽略不計。在分析中可以針對一個散熱片進(jìn)行分析,每個散熱片兩邊有散熱片之間距離一半厚度的相變材料。
c. 根據(jù)對稱性進(jìn)行簡化
由相變散熱器的結(jié)構(gòu)特點可知,散熱器是上下對稱的,可以根據(jù)對稱條件進(jìn)行簡化,只分析一半模型,最終分析模型。
4 模型分析
4.1 分析目的
設(shè)計該相變散熱器的最終目的是保證某發(fā)熱電子器件在真空環(huán)境下能工作20 分鐘,并且散熱器的體積最小。散熱器的長度和高度已經(jīng)確定,可以改變的只有散熱器的寬度。通過改變散熱片的數(shù)量和散熱片之間的距離來改變散熱器的散熱能力。如果要使散熱器的體積最小,就必須使散熱器工作20 分鐘后,所有的相變材料剛好比較均勻的完全發(fā)生相變。如果要達(dá)到此目的,只有改變散熱片之間的距離。
4.2 材料參數(shù)及邊界條件
熱管和散熱片的材料為銅,相變材料為一種特殊材料,在相變過程中會發(fā)生焓變,焓值如表1 所示,材料的其它熱特性參數(shù)。
假設(shè)模型中的熱管為恒溫90℃,相變材料和散熱片的初始溫度為20℃。模型的邊界上與外界絕熱。
4.3 分析步驟
a. 利用proe 三維軟件建立如圖4 所示的模型,在proe 中運行Ansys Geom 命令,把模型導(dǎo)入到Ansys 中。
b. 建立有限元單元,模型中都采用Solid 70 單元,輸入材料參數(shù)。
c. 劃分網(wǎng)格,分別對各實體進(jìn)行劃分網(wǎng)格,共劃分了102112 個網(wǎng)格。
d. 加載,選中熱管的所有點,施加溫度載荷,再選擇其它點,加載初始溫度。
e. 求解,新建分析,分析類型為瞬態(tài)熱分析,設(shè)置求解時間為1200 秒,步長為20,進(jìn)行求解計算。
4.4 結(jié)果分析
通過改變散熱片之間的距離,進(jìn)行了多次計算分析,最后確定散熱片之間的距離為6mm 時,散熱器體積最小,在工作20 分鐘后,所有的相變材料基本上完全熔化。圖為當(dāng)散熱片之間距離為4mm 時,工作20 分鐘后的溫度分布圖。圖為當(dāng)散熱片之間距離為6mm 時,工作20 分鐘后的溫度分布圖。圖為當(dāng)散熱片之間距離為8mm 時,工作20 分鐘后的溫度分布圖。
相關(guān)標(biāo)簽搜索:運用Ansys對相變散熱器進(jìn)行熱分析及優(yōu)化 蘇州 杭州 Ansys熱分析 Ansys有限元培訓(xùn) Ansys workbench培訓(xùn) ansys視頻教程 ansys workbench教程 ansys APDL經(jīng)典教程 ansys資料下載 ansys技術(shù)咨詢 ansys基礎(chǔ)知識 ansys代做